发布于2025-05-14 阅读(0)
扫一扫,手机访问
图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图
视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。
本文主要推荐一些较好的开源免费的图像标注工具。
https://github.com/SkalskiP/make-sense
Makesense.ai是一个免费的在线跨平台工具,用于标记照片,非常适合小型计算机视觉深度学习项目。它简化了数据集的准备,标签可以以多种格式下载。该应用程序使用TypeScript编写,基于React/Redux框架开发。它集成了YOLOv、在COCO数据集上预训练的SSD和PoseNet等先进的AI模型,可以自动化图像标注。其中AI功能基于TensorFlow.js框架,因为照片不需要传输到服务器,可确保数据隐私安全。
https://github.com/labelmeai/labelme
Labelme是一个基于Python的图像标注工具,支持各种标注类型,并提供自定义GUI。可以导出VOC和COCO格式的数据集,用于语义和实例分割。
功能特征:
https://github.com/xtreme1-io/xtreme1
Xtreme1是一个用于标注多模式训练数据的开源平台,提高了数据注释、管理和本体管理的效率。其人工智能工具旨在提高2D/3D对象检测、3D实例分割和激光雷达相机融合项目的效率。
功能特征:
https://github.com/HumanSignal/label-studio
Label Studio是一个可用于标记数据类型(如:音频、文本、图像、视频和时间序列)的开源工具。
https://github.com/l3p-cv/lost
LOST(Label Object and Save Time)是一个基于Web的图像协同标注工具。它提供了预先构建的注释管道,无需编程知识即可进行即时图像注释,但也允许用户定义注释管道。
该应用程序是可扩展的,可以轻松连接到外部文件系统,如S3 Bucket或Azure Blobstorage。可以在本地或Web服务器上设置,并支持组织建立标签树,监控标注过程和浏览器内标注。
关键特征:
https://github.com/opencv/cvat
CVAT(Computer Vision Annotation Tool )是一种用于视频和图像标注的交互式工具,在计算机视觉中广泛使用。它支持以数据为中心的人工智能方法,可以免费在线使用,也可以订阅其他功能。CVAT也可以私有化安装,并为高级功能提供企业支持。
https://github.com/bk138/gromit-mpx
Gromit-MPX是一个Unix桌面环境下的标注工具,用户可以直接在屏幕上绘制,突出显示感兴趣的点来增强演示文稿。
https://github.com/OvidijusParsiunas/myvision
MyVision是一个免费的在线图像标注工具,用于生成计算机视觉的机器学习训练数据。支持绘制边界框和多边形,用于对象标注、多边形操作,并支持各种数据集格式。它还支持使用”COCO-SSD”模型进行自动标注,可以在本地操作以确保数据隐私安全。
支持的数据格式:
功能特征:
https://github.com/HumanSignal/labelImg
LabelImg是一个流行的图像标注工具,目前已加入Label Studio社区,不再积极开发。Label Studio是一个灵活的开源数据标签工具,适用于各种类型的数据,包括图像,文本,音频,视频和时间序列数据。
LabelImg中的标注信息以PASCAL VOC格式保存,另外,它还支持YOLO和XML格式。
https://github.com/jsbroks/coco-annotator
COCO Annotator是一个基于Web的高效且多功能的图像标记工具,旨在为训练图像定位和对象检测创建数据集。
它提供的功能包括段标记、对象实例跟踪以及标记具有断开连接的可见部分的对象。它通过直观和可定制的界面以COCO格式存储和导出注释。
功能特征:
https://github.com/UniversalDataTool/universal-data-tool
Universal Data Tool是一个多功能的应用程序,用于编辑和标注图像、文本、音频和文档等数据类型。它支持图像分割、文本分类和音频转录等任务。该工具支持实时协作,可运行于各种平台,并支持多种数据格式。
https://github.com/ryouchinsa/Rectlabel-support
Label是一个离线图像标注工具,可用于对象检测和分割。
关键特征:
https://github.com/Cartucho/OpenLabeling
OpenLabeling是一个用于标注图像和视频的开源工具。它支持PASCAL VOC和YOLO Darknet等多种格式。
该工具已被用于:深度学习对象检测模型、用于视觉对象跟踪的干扰感知Siamese网络、边界框跟踪和用于视频对象跟踪的OpenCV跟踪器。
https://github.com/shoumikchow/bbox-visualizer
bbox-visualizer可以帮助用户在对象周围绘制边界框,消除了对标签定位的复杂数学计算的需要。它提供了各种可视化类型,用于在识别后标记对象。边界框点的数据格式为:(xmin, ymin, xmax, ymax)。
https://github.com/abreheret/PixelAnnotationTool
PixelAnnotationTool是一个可以使用OpenCV的分水岭算法快速手动注释目录中图像的工具。
用户可以用画笔手动标记区域,然后启动算法。如果初始分割需要校正,用户可以在错误区域上重新绘制新的区域标注。
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店