发布于2023-05-18 阅读(0)
扫一扫,手机访问
随着人工智能(AI)变得越来越复杂并在社会上得到广泛采用,一组最关键的流程和方法是可解释AI,有时也称为XAI。
一组帮助人类用户理解和信任机器学习算法结果的过程和方法。
可猜到,这种可解释性是非常重要的。因为AI算法控制了许多领域,这带来了偏见、错误算法和其他问题的风险。通过可解释性实现透明度,世界可以真正利用人工智能的力量。
可解释AI,顾名思义,有助于描述一个AI模型、其影响和潜在的偏见。其还在描述模型的准确性、公平性、透明度和人工智能驱动决策过程的结果方面发挥着作用。
现今的AI驱动的组织应该始终采用可解释AI流程,以帮助在生产中建立对AI模型的信任和信心。在当今的人工智能环境中,可解释AI也是成为负责任的企业的关键。
由于如今的人工智能系统非常先进,人类通常会执行一个计算过程,以追溯算法是如何得到结果的。这个过程变成了一个“黑匣子”,意味着其是无法被理解的。当这些无法解释的模型直接从数据中开发出来时,没有人能理解其中发生了什么。
通过可解释AI来了解AI系统是如何运行的,开发者可以确保系统能够正常工作。其还可以帮助确保模型符合监管标准,并为模型提供挑战或更改的机会。
一些关键的差异有助于将“常规”AI与可解释AI区分开来,但最重要的是,XAI实现了特定的技术和方法,以帮助确保ML过程中的每个决策都是可跟踪和可解释的。相比之下,常规AI通常使用ML算法得到结果,但不可能完全理解算法是如何得到结果的。在常规AI的情况下,很难检查准确性,导致控制、问责和可审核性的丧失。
任何希望采用可解释AI的组织都有很多好处,例如:
有一些XAI技术是所有组织都应该考虑的,有三种主要方法:预测准确、可追溯性和决策理解。
为了更好地理解XAI及其原则,隶属于美国商务部的美国国家标准研究院(NIST)提供了可解释AI的四项原则的定义:
可解释AI最重要的组成部分之一是数据。
根据Google的说法,关于数据和可解释AI,“一个AI系统最好通过底层的训练数据和训练过程,以及产生的AI模型来理解。”这种理解依赖于将经过训练的AI模型映射到用于训练其精确数据集的能力,以及密切检查数据的能力。
为了增强模型的可解释性,重要的是要注意训练数据。团队应该确定用于训练算法的数据的来源、获取数据的合法性和道德规范、数据中的任何潜在偏见,以及可以采取哪些措施来减轻任何偏见。
数据和XAI的另一个关键方面是,应该排除与系统无关的数据。为了实现这一点,不相关的数据必须不包含在训练集或输入数据中。
Google建议了一套实现可解释性和问责制的做法:
通过遵循这些推荐的做法,组织可以确保实现可解释AI。这对于当今环境中任何AI驱动的组织来说都是关键。
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店
售后无忧
立即购买>office旗舰店